Scale-selective Turbulence Reduction in H-mode Plasmas in the TJ-II Stellarator / Design of a new Doppler Reflectometer Transceiver Front End for the ASDEX Upgrade Tokamak

T. Happel,1 T. Estrada,2 E. Blanco,2 G. D. Conway,1 W. Kasparek,3 B. Plaum,3 C. Lechte,3 D. Wagner,1 U. Stroth1 and the TJ-II2 and ASDEX Upgrade1 Teams

1MPI für Plasmaphysik, Assoc. Euratom-IPP, 85748 Garching, Germany
2Lab. Nacional de Fusión, Assoc. Euratom-CIEMAT, 28040 Madrid, Spain
3Institut für Plasmaphysik, Universität Stuttgart, 70569 Stuttgart, Germany

e-mail: tim.happel@ipp.mpg.de

The TJ-II Doppler reflectometer [1, 2] (frequency hopping Q-band, $f_0 = 33 – 50$ GHz) uses a steerable ellipsoidal mirror to change the measured turbulence scale between $k_\perp = 3 – 15$ cm$^{-1}$ on a shot-to-shot basis. This possibility has enabled the investigation of the scale-dependence of turbulence reduction from L- to H-mode. Wavenumber spectra have been obtained with radial resolution, and a preferential reduction of turbulence close to the shear layer of the radial electric field is observed. Power laws – identified in both L- and H-mode spectra – are slightly more pronounced in the H-mode. Turbulence reduction in the H-mode is scale-selective, a comparison with the L-mode spectra shows that intermediate scales are preferably reduced. This effect can be interpreted in the framework of zonal flow generation through Reynolds stress [3], while turbulence decorrelation by sheared flows [4] might not play a central role.

Furthermore, the design of a new transceiver front end for the W-band Doppler reflectometer of ASDEX Upgrade is presented. The microwave backbone of the existing system [5] (frequency hopping synthesizer, $f_0 = 75 – 105$ GHz) is used. The new bistatic system consists of smooth-bore circular oversized waveguides (to minimize microwave power loss) from the microwave oscillators up to the in-vessel smooth-wall horn antennas (side lobes <-25 dB). A combination of two mirrors and one common ellipsoidal mirror – which serves to focus the beam to the cutoff layer to obtain optimum spectral resolution – will be used to control the tilt angle of the beam in the direction perpendicular to the magnetic field. This allows for a perpendicular wavenumber measurement range of $k_\perp = 5 – 25$ cm$^{-1}$. The mirror movement can be stepped by a piezo controller, allowing for several beam tilt angles during one discharge.